Recognition of DNA Termini by the C-Terminal Region of the Ku80 and the DNA-Dependent Protein Kinase Catalytic Subunit

نویسندگان

  • Derek S. Woods
  • Catherine R. Sears
  • John J. Turchi
چکیده

DNA double strand breaks (DSBs) can be generated by endogenous cellular processes or exogenous agents in mammalian cells. These breaks are highly variable with respect to DNA sequence and structure and all are recognized in some context by the DNA-dependent protein kinase (DNA-PK). DNA-PK is a critical component necessary for the recognition and repair of DSBs via non-homologous end joining (NHEJ). Previously studies have shown that DNA-PK responds differentially to variations in DSB structure, but how DNA-PK senses differences in DNA substrate sequence and structure is unknown. Here we explore the enzymatic mechanisms by which DNA-PK is activated by various DNA substrates and provide evidence that the DNA-PK is differentially activated by DNA structural variations as a function of the C-terminal region of Ku80. Discrimination based on terminal DNA sequence variations, on the other hand, is independent of the Ku80 C-terminal interactions and likely results exclusively from DNA-dependent protein kinase catalytic subunit interactions with the DNA. We also show that sequence differences in DNA termini can drastically influence DNA repair through altered DNA-PK activation. These results indicate that even subtle differences in DNA substrates influence DNA-PK activation and ultimately the efficiency of DSB repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit.

Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3' deletion analysis of Ku80, the larger subunit of Ku, and shown t...

متن کامل

THE EFFECT OF THEOPHYLLINE ON THE KINETICS OF cAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT, cAMP, PROTEIN KINASE INHIBITOR AND THEIR RELATIONSHIP IN LUNG TISSUE

We have investigated the effect of theophylline on the kinetics of the catalytic subunit of protein kinase and related factors in lung tissue. The results show that the point of highest concentration of the C subunit of protein kinase which is active in casein phosphorylation is at 3h of incubation time, but in the presence of 100 Ilg/ InL and 10µg/mL theophylline, this is shifted to I.S an...

متن کامل

Deformed Epidermal Autoregulatory Factor-1 (DEAF1) Interacts with the Ku70 Subunit of the DNA-Dependent Protein Kinase Complex

Deformed Epidermal Autoregulatory Factor 1 (DEAF1) is a transcription factor linked to suicide, cancer, autoimmune disorders and neural tube defects. To better understand the role of DEAF1 in protein interaction networks, a GST-DEAF1 fusion protein was used to isolate interacting proteins in mammalian cell lysates, and the XRCC6 (Ku70) and the XRCC5 (Ku80) subunits of DNA dependent protein kina...

متن کامل

Cryo-EM structure of the DNA-PK holoenzyme.

DNA-dependent protein kinase (DNA-PK) is a large protein complex central to the nonhomologous end joining (NHEJ) DNA-repair pathway. It comprises the DNA-PK catalytic subunit (DNA-PKcs) and the heterodimer of DNA-binding proteins Ku70 and Ku80. Here, we report the cryo-electron microscopy (cryo-EM) structures of human DNA-PKcs at 4.4-Å resolution and the DNA-PK holoenzyme at 5.8-Å resolution. T...

متن کامل

A targeted inhibition of DNA-dependent protein kinase sensitizes breast cancer cells following ionizing radiation.

A major mechanism by which cancer cells become resistant to ionizing radiation (IR) and chemotherapy drugs is by enhanced DNA repair of the lesions; therefore, through inhibition of DNA repair pathways that tumor cells rely on to escape chemotherapy, we expect to increase the killing of cancer cells and reduce drug resistance. DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015